七年级下册数学教案【优秀9篇】-k8凯发棋牌
教师课后小结,教学中的亮点和不足,以及教学灵感等。主耍是帮助教师及时评价自己的教学效果,改进教学水平。那么应该怎么写好教案呢?下面是小编精心为大家整理的七年级下册数学教案【优秀9篇】,在大家参照的同时,也可以分享一下给您最好的朋友。
内容导航
初一数学下册教案 篇1七年级数学下册教学设计 篇2最新七年级数学下册教案人教版例文 篇3七年级数学下册教案 篇4七年级数学下册教学设计 篇5七年级数学下册教案 篇6最新七年级数学下册教案人教版例文 篇7七年级数学下册教案 篇8最新七年级数学下册教案人教版例文 篇][9初一数学下册教案 篇1
学习目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛
2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角
重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用。
难点:理解对顶角相等的性质的探索。
教学过程
一、复习导入
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件。
学生欣赏图片,阅读其中的文字。
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线。本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的'性质和平行的判定以及图形的平移问题。
二、自学指导
观察剪刀剪布的过程,引入两条相交直线所成的角
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小。如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大。
三、问题导学
认识邻补角和对顶角,探索对顶角性质
(1).学生画直线ab、cd相交于点o,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
∠aoc和∠boc有一条公共边oc,它们的另一边互为反向延长线。
∠aoc和∠bod有公共的顶点o,而是∠aoc的两边分别是∠bod两边的反向延长线。
( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等。
(3).概括形成邻补角、对顶角概念。
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角。
如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角。
四、典题训练
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数。
2.:判断下列图中是否存在对顶角。
小结
自我检测
一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角,那么它们互为邻补角。 ( )
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补。 ( )
二、填空题:
1.如图1,直线ab、cd、ef相交于点o,∠boe的对顶角是_______,∠cof的邻补角是________.若∠aoc:∠aoe=2:3,∠eod=130°,则∠boc=_________.
2.如图2,直线ab、cd相交于点o,∠coe=90°,∠aoc=30°,∠fob=90°,则∠eof=________.
三、解答题:
1.如图,直线ab、cd相交于点o.
(1)若∠aoc ∠bod=100°,求各角的度数。
(2)若∠boc比∠aoc的2倍多33°,求各角的度数。毛
2.两条直线相交,如果它们所成的一对对顶角互补,那么它的所成的各角的度数是多少?
七年级数学下册教学设计 篇2
一、合理安排小组合作学习的时间
“合作时间”的安排是小组合作学习的关键,只有合理的时间安排才能使整个合作学习过程不趋于形式,进而收获成效。对于小组合作学习来说,学习的时间的长短应根据教学内容而定,教师可以把一节课或者几节课的时间用来进行小组合作学习,让学生在合作式探索和相互学习中更深入理解课本知识,或者在课堂内让学生对某个问题进行短时间的辩论思考。在这个过程中,最重要的一点是要使学生的思维活动得到充分的表达,让学生在每次合作学习过程中有充足的时间去独立思考、发表个人意见以及对问题进行相互讨论。同时,教师需要密切关注各小组情况,引导学生进行课内外的合作延伸,并对部分有学习困难的小组实施及时的帮助。
二、合理设计问题
教师在课堂中提出的问题不应过于简单,简单的问题虽然看起来能使课堂气氛活跃,但时间久了会培养学生的思维惰性,设计的问题应能够促进学生动脑,有利于集体探究、促进合作,引导他们主动探究数学知识。比如在上《三角形中位线》这一课程时,根据学生反馈,像“什么是三角形的中位线?一个三角形有多少条中位线?中位线和中线有什么区别?如何证明三角形中位线定理?”问题的前面部分学生能够很轻松地理解和掌握,但他们对课本上关于这个定理的证明思路及方法是陌生而疑惑的这个时候不需要急着去向学生解释,应该让班上同学提出他们的问题,针对问题的要害来进行适当的点拨,让他们发挥集体智慧再进行讨论,进而通过合作来解决问题。
三、教师角色扮演
在小组合作学习过程中,教师作为学生学习的向导及促进者,甚至是学习合作者,其主要的行为表现就是交流、倾听、分享、办作,他们在合作学习过程中同时扮演顾问、权威和同伴三种角色,学生学习方式的转变是通过教师角色的变化实现。教师需要注意每个学生的参与度,根据不同班级和小组的特定情况,教师应当使用恰当的语言对学生的学习过程进行指导和评价,使各问题的形成和解决过程得到充分的展示,使互动过程达到高效的目的
四、对小组合作学习进行恰当评价
小组合作学习总的评价标准是小组的成就,其表现主要分为两个方面:
①对学生学业方面的进步做出评价;
②对小组的工作以及合作情况做出评价。小组评价标准需要在进行小组合作学习开始的时候就已明确,小组评价标准是一个十分重要的前提条件,小组合作任务不同则标准可以不同,要求越具体就越能使学生明确所要达到的目标,越有利于提高学习效率。以下案例可以说明这个问题:
案例1
在“整式”教学过程中教师提出了如下评价标准:达标:小组内每个成员都积极参与。良好:组内成员均积极合作、互帮互助,实现了真正的合作。优秀:组内每个成员学会了知识的同时还发展了能力。
案例2
老师和同学在二次函数3种表示的教学过程中共同制定标准:a.三人一组,由老师随机抽査。b.由老师决定被抽到小组的哪位成员选择相应表示方式。c.每人用一种表示来轮流完成某一函数的3种表示方式。d.组内成员均表示正确且合理的小组为优秀。由以上两个案例可以看出,第一个案例的小组评价分了几个等级,但并没有表述出很强的操作性,真正参与和真正合作的定义不明,缺少具体的行为目标,在实施过程中会导致偏差的出现。
五、结束语
小组合作学习的教学方式要重视小组合作的实效,避免形式主义,并不是场面热闹就能促进学习效率。这种全新的学习和教学方式的目的是使学生在学习方式上得到转变,自身素质得到全面发展,该方式的推广需要广大教师积极探索、不断创新。
最新七年级数学下册教案人教版例文 篇3
教学目标
1.理解和掌握倒数的意义。
2.能正确的求出一个数的倒数。
3.培养学生的观察能力和概括能力。
教学重点
认识倒数并掌握求倒数的方法
教学难点
小数与整数求倒数的方法
教学过程
一、基本训练
(一)口算
=
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
(一)乘积是1的两个数存在着怎样的倒数关系呢?
请看: ,那么我们就说 是 的倒数,反过来(引导学生说) 是 的倒数,也就是说 和 互为倒数。
和 存在怎样的倒数关系呢?2和 呢?
(二)深化理解
教师提问
1.什么是互为倒数?
2.怎样理解这句话?(举例说明)
( 的倒数是 , 的倒数是 ,……不能说 是倒数,要说它是谁的倒数。)
3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如 , ,……但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作 ,1与 相乘还是1,符合倒数的意义,所以1的倒数是1)。
(三)求一个数的倒数
1.例:写出 、 的倒数
学生试做讨论后,教师将过程板书如下:
所以 的倒数是 , 的倒数是 .
(能不能写成 ,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
2.深化
你会求小数的倒数吗?(学生试做)
三、训练、深化
(一)下面哪两个数互为倒数
(演示课件:倒数的认识1)
(二)求出下面各数的倒数
(演示课件:倒数的认识2)
(三)判断
1.真分数的倒数都是假分数。( )
2.假分数的倒数都小于1.( )
3.0没有倒数。( )
(四)提高
如果末尾加上=1怎么填?
如果末尾加上=0怎么填?
如果末尾加上=2怎么填?
四、课堂小结
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?
五、课后作业
(一)下面哪两个数互为倒数?
(二)写出下面各数的倒数。
六、板书设计
七年级数学下册教案 篇4
〖教学目标〗
1、经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。
2、会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。
3、会用多项式的乘法解决简单的实际问题。
〖教学重点与难点〗
教学重点:多项式与多项式相乘的运算。
教学难点:例2包含了多种运算,过程比较复杂是本节的难点。
〖教学过程〗
一、创设情境,引出课题
小明找来一张铅画纸包数学课本,已知课本长a厘米,宽b厘米,厚c厘米,小明想将课本封面与封底的每一边都包进去m厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形?
二、引出新知,探究示例
1、合作探索学习:有一家厨房的平面布局如图1
(1)请用三种不同的方法表示厨房的总面积。
(2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗?
(3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律吗?
(让学生以同桌合作的形式进行探索,然后表达交流)
答:(1)总面积:(a n)(b m);a(b m) n(b m)或b(a n) m(a n);ab am nb nm
(2)总面积相等,由此可得到(a n)(b m)=a(b m) n(b m)……①
=ab am nb nm……②
第①步运用分配律把(b m)看成一个数,第②步再运用分配律。
(3)由(a n)(b m)=ab am nb nm师生共同总结得出多项式与多项式相乘的法则:
(学生归纳,教师板书)
2、运用新知,计算例题
例1:计算
(1)(x y)(a 2b)(2)(3x—1)(x 3)(3)(x—1)2
解:(1)(x y)(a 2b)=x?a x?(2b) y?a y?(2b)=ax 2bx ay 2by
(2)(3x—1)(x 3)=3x2 9x—x—3=3x2 8x—3
(3)(x—1)2=(x—1)(x—1)=x2—x—x 1=x2—2x 1
教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。
反馈练习:课内练习1
例2,先化简,再求值:(2a—3)(3a 1)—ba(a—4),其中a=
解:(2a—3)(3a 1)—ba(a—4)=6a2 2a—9a—3—6a2 24a=17a—3
当a=时,原式=17a—3=17×()—3=—19—3=—22
注意的几点:(1)必须先化简,再求值,注意符号及解题格式。
(2)当代入的是一个负数时,添上括号。
(3)在运算过程中,把带分数化为假分数来计算。
反馈练习:1、计算当y=—2时,(3y 2)(y—4)—(y—2)(y—3)的值。
2、课内练习2、3。
三、分层训练,能力升级
1、填空
(1)(2x—1)(x—1)=
(2)x(x2—1)—(x 1)(x2 1)=
(3)若(x—a)(x 2)=x2—6x—16,则a=
(4)方程y(y—1)—(y—2)(y 3)=2的解为
2、某地区有一块原长m米,宽a米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为平方米。
3、某人以一年期的定期储蓄把20xx元钱存入银行,当年的年利率为x,第二年的年利率减少10%,则第二年到期时他的本利和为多少元?
四、小结
让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。
五、布置作业
课本的分层作业题。
七年级数学下册教学设计 篇5
教学目标
掌握幂的乘方法则,并能够运用法则进行计算。
会进行简单的幂的混合运算。
在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。
让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。
重点难点
重点
幂的乘方法则的运用。
难点
幂的乘方法则的推导以及幂的混合运算。
教学过程
一、复习导入
1.表示什么意义?表示什么意思呢?
2.同底数幂乘法法则是什么,它是怎样推导的?
通过讨论,使学生正确读出式子并理解式子所表达的运算,指出这种式子表达的是幂的乘方运算,怎样进行幂的乘方运算呢?
二、新课讲解
探究新知
1.思考:
①请根据的意义计算出它的结果,并想一想每一步计算的依据是什么?
②你能说出、的意义吗?
③请你计算、,并想一想每一步计算的依据是什么?
(鼓励学生站起来回答,培养学生数学表达的能力)
2.发现:
①从上面的计算中你发现了这几道题的运算结果有什么共同之处吗?从中你能发现运算的方法吗?猜一猜的结果是什么?
②验证猜想,得出结论
===(m,n都是正整数)
用语言叙述为:幂的乘方,底数不变,指数相乘。
三、典例剖析
例1计算:
(1);(2);(3)(m是正整数);(4)(n是正整数)
要求学生读出式子并按法则运算,提高符号演算的能力。注意(2)应读成a的3次幂的4次方的相反数(或者-1乘以a的3次幂的4次方),强调求相反数是运算的最后一步,训练学生在计算式子前先正确理解式子的良好习惯。
例2计算:
学生独立思考后进行交流,交流时要求学生按照先读式子,再分析式子的步骤给全班同学讲解。重视数学的表达和交流能促进学生养成良好的思维能力和思维习惯。
四、课堂练习
基础练习
1.填空:
(1);(2);
2.下面的计算对不对?如果不对,应怎样改正?
教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因,(1)是混淆了幂的乘法运算,(2)是把两个指数理解成了3的2次方。强调正确记忆法则,仔细分析式子里的运算。
提高训练:
3.对比同底数幂的乘法法则和幂的乘方法则,你有好的方法来记忆吗?
引导学生观察两种运算的共同点。幂的这两种运算最终都转化成了对指数的运算,其中幂的乘法转化成了指数的加法,幂的乘方转化成了指数的乘法,初一看两个法则截然不同,但从转化的角度来看,它们又有共同之处,那就是都将原来的幂的运算降了一级,乘法变了加法,乘方变了乘法。
4.自编两道同底数幂的乘法、幂的乘方混合运算题,并与同学交流计算过程与结果。
学生活动后,教师选取编的好的题向全班展示,提高学生的兴趣。
5.已知,求的值。
逆向运用幂的运算性质,能培养学生思维的灵活性。由,我们不能求出m,n的值,但我们可以从入手,观察到,从而可以通过整体代入来求解。
五、小结
师生共同回顾幂的运算法则,互相交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
1.p40第2题
2.自编两道同底数幂的乘法、幂的乘方混合运算题,并计算。
七年级数学下册教案 篇6
教学目标:
(一)知识目标:
1、探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、
2、理解运算法则及在乘法中对系数运算和指数运算的`不同规定、
(二)能力目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、
(三)情感目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、
教学重点:
探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、
教学难点:
理解运算法则及在乘法中对系数运算和指数运算的不同规定、
教学过程:
导入新课:
为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画、
受他的启发,京京用两张同样大小的纸,精心制作了两幅画;第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x米的空白、
想一想:
(1)对于上面的画面小明得到如下的结果:
第一幅画的画面面积是x(mx)米2、
第二幅画的画面面积是(mx)(x)米2、
他的结果对吗?可以表达得更简单些吗?说说你的理由、
(2)类似地,3a2b2ab3和(xyz)y2z可以表达得更简单些吗?为什么?
(3)如何进行单项式与单项式相乘的运算?
教师应鼓励学生运用乘法交换律、结合律和同底数幂的运算性质等知识的运算法则,并要求他们说明运算的道理,鼓励学生自己总结单项式与单项式相乘的运算法则、
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
最新七年级数学下册教案人教版例文 篇7
教学目标:
1. 使学生进一步理解比例尺的意义,掌握利用比例尺求图上距离和实际距离的方法。
2. 使学生能综合运用比例尺知识,解决有关问题,提高学生解决问题的能力。
教学重点:求图上距离和实际距离。
教学难点:求实际距离。
教学过程:
一旧知铺垫
1. 什么叫做比例尺?
板书:图上距离:实际距离=比例尺
2.说一说下列各比例尺表示的具体意义。
(1)比例尺1:45000
(2)比例尺80:1
(3)0----40㎞
1. 教学例2。
(1) 出示课文例题及插图。
(2) 说一说从中你得到哪些信息。
已知条件:
① 1号线的图上长度是10㎝;
② 这幅地图的比例尺1:500000。
所求问题:1号线的实际长度是多少?
(3) 你认为可以用什么方法解决问题?
① 学生尝试解决问题。
② 教师巡视课堂,了解解答情况,并对个别学生进行指导,帮助他们找到解决问题的方法。
③ 汇报解答情况。
方程解:
解:设地铁1号线的实际长度是x厘米。
根据图上距离 :实际距离=比例尺,可以例比例式解答
10/x=1/500000
x=10×500000(问:根据什么?)
根据比例的基本性质。
x=5000000
5000000㎝=50㎞
答:略
算术解:
根据图上距离除以实际距离等于比例尺 ,得出:实际距离等于图上距离除以比例尺
10÷1/500000
=10×500000
=5000000(㎝)
5000000㎝=50㎞
答:略
2. 教学例3。
(1) 出示例题,学生了解题目要求。
(2) 讨论:你想怎样画?
通过讨论,使学生进一步理解在绘制平面图的时候,需要把实际距离按一定的比缩小,再画在图纸上。这时,就要确定;图上距离和相对应的实际距离的比。
① 确定比例尺;
② 求出图上的距离;
③ 画出操场的平面图。
(3) 小组同学合作,解决问题。
学生练习活动时,教师巡视课堂,了解学生解决问题的情况,记录存在的问题。
(4) 汇报,交流。
① 小组派代表说明你的方案和结果。
② 选择合适的方案,展示结果,并说明k8凯发棋牌的解决方案
如:选择比例尺1:1000画图。求出图上的长度
80×1/1000=0.08m
0.08m=8㎝
图上的宽=60×1/1000=0.06m
0.06m=6㎝
操场平面图:
三巩固练习
1.完成课文“”做一做”
2. 完成课文练习八第4~10题。
辅导记录:学习用比例尺解决问题后,要求学生必须会用比例的知识解答,个别学生图简便,直接用算术法,而忽略了比例尺的方法,这种方法的单位换算是最容易出错的。
补充练习:
比例尺
1、在比例尺是1∶5000000的地图上,量的甲乙两地的距离是8厘米,甲乙两地的实际距离是( )千米。
2、在一幅地图上,甲、乙两地之间的距离是3厘米,甲、乙两地的实际距离是150千米。这幅地图的比例尺是( )
3、有一种手表零件长5毫米,在设计图纸上的长度是10厘米,图纸的比例尺是( )
4、从海口到三亚全长340千米,如果将它画在1:50000的地图上,约是( )厘米。(得数保留整厘米数)
5、一块长方形的地,长75米,宽30米,用1/1000 的比例尺把它画在图纸上,长画( ),宽画( )。
6、大新小学体育场长150米,宽80米,请用1/10000 的比例尺把它画在图纸上,并求出图纸上的体育场的面积是多少?
7、在长28厘米,宽18厘米的纸上,画学校的平面图。校园东西长520米,南北宽320米。用多大的比例尺比较合适?运动场长150米,在图上应画多长?
8、在比例尺是1:400的地图上,量得一个长方形的周长是20厘米,长与宽的比是3:2。这个长方形的实际面积是多少?
填空:
1、如果 a×3=b×5,那么 a∶b=( )∶( )。
2、1:2000的图纸上面积是24平方厘米,实际面积是( )公顷。
3、一个精密仪器零件图纸的比例尺是50:1,图上长5厘米,实际长( )厘米。
4、将2、5、8再配上一个数组成比例,这个数可以是( )。
5、如果x÷y = 712 ×2,那么x和y成( )比例;如果x:4=5:y,那么x和y成( )比例。
6、一种精密零件长5毫米,把它画在比例尺是12:1的零件图上长应画( )厘米。
7、在一幅中国地图上量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是180千米。这幅地图的比例尺是( )。
8、、a的 与b的 相等,那么a∶b=( )∶( ),它们的比值是( )。
9、在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( )千米。
10、甲乙两个互相咬合的齿轮,它们的齿数比是7:3,甲乙齿轮的转数比是( ).
11、在一张比例尺为1∶300的图纸上量得一个房间的长是2厘米,宽1.5厘米,这个房间的实际长是( )米;如果有一条道路的长60米,画在这张图纸上应画( )厘米。
七年级数学下册教案 篇8
教学目标:
知识目标:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
能力目标:进一步培养学生分析、归纳和探索能力。
情感目标:培养学生数形结合的思想。
教学重难点:公式的应用及推广。
教学过程:
一、复习提问:
1.(1)用较简单的代数式表示下图纸片的面积.
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。
讲评要点:
沿hd、gd裁开均可,但一定要让学生在裁开之前知道hd=bc=gd=fe=ab,
这样裁开后才能重新拼成一个矩形。
(3)比较(1)(2)的结果,你能验证平方差公式吗?
学生讨论,自己得出结果
2.(1)叙述平方差公式的数学表达式及文字表达式;
(2)试比较公式的两种表达式在应用上的差异.
说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的。a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.
3.判断正误:
(1)(4x 3b)(4x3b)=4x23b2;(×)(2)(4x 3b)(4x3b)=16x29;(×)
二、新课:
运用平方差公式计算:
(1)102×98;(2)(y 2)(y2)(y2 4).
填空:
(1)a24=(a 2)();(2)25x2=(5x)();(3)m2n2=()();
思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?
最新七年级数学下册教案人教版例文 篇][9
教学目标:
1、运用所学的圆、比例等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
2、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力
3、经历解决问题的基本过程,了解数学与生活的密切关系。
重点难点: 运用所学知识解决实际问题。
教学过程:
一、揭示课题
1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2、自行车里会有数学问题吗?想一想。
二、研究普通自行车的速度与内在结构的关系
1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。
2、分析问题
(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数
建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)
(2)分组收集所需要的数据,带入上述模式,求出答案。
4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。三、研究变速自行车能组合出多少种速度?
1、提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)
(2)根据这个结构,可以组合出多少种速度?
2、分析问题,求解,汇报。
3、蹬同样的圈数,哪种组合使自行车走得最远?
四、课堂作业
1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?
2、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)
五、课堂小结
自行车里的学问可真大,你还能提出一些数学问题并解决吗?